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Self-consistent system of equations for a kinetic description of the low-pressure discharges
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In low-pressure discharges, where the electron mean free path is larger or comparable with the discharge
length, the electron dynamics is essentially nonlocal. Moreover, the electron energy distribution function
(EEDP deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-
pressure discharges requires knowledge of the nonlocal conductivity operator and calculation of the non-
Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile
and a Maxwellian EEDF. In the present study, a self-consistent system of equations for the kinetic description
of nonlocal, nonuniform, nearly collisionless plasmas of low-pressure discharges is derived. It consists of the
nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF.
The importance of accounting for the nonuniform plasma density profile on both the current density profile and
the EEDF is demonstrated.
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[. INTRODUCTION electrostatic potentidlinstead of being a function of veloci-
ties and spatial coordinates as in a general ¢g@gv). This
Low-pressure radio-frequency discharges are extensive@SSlJmption allows significant simplifications of the Boltz-
utilized for plasma processing and lightiftj. Simulation of ~Mann equation, which effectively reduces from a six-
discharge properties is a common tool for optimization of thedimensional(three dimensional in coordinate and three di-

plasma density profiles and ion and electron fluxes. Recel{pensmnal in velocity spageproblem in phase space to a

lasma technology tends to decrease the gas pressures do(\?vne-dimensional (1D) problem fore(iz) as a function of
b L gy gas pre : orﬂys. The final 1D equation for the electron energy distri-
to the millitorr range. For these low pressures it is easier t

e i ; Sution function is the temporal-spatial averaged Boltzmann
maintain uniform plasmas with well controlled parameters.qqyation over the phase space available for the electron with
Due to the large value of the electron mean free pathe 3 given total energy. The nonlocal approach is the case
electron current is determined not by the local rf electric fieldopposite to the local description of plasma, whégér,v)
(Ohm’s law), but rather is a function of the whole profile of can be assumed as a function of only kinetic energy and the
the rf electric field on distances of the ordenofanomalous local rf electric fieldf,(mv?/2,E(r)), and gradients of the
skin effecy. Therefore, a rather complicated nonlocal con-local rf electric field and influence of the ambipolar electric
ductivity operator has to be determined for the calculation ofi€ld are neglected. The nonlocal approach has been success-
the rf electric field penetration into the plasma. Moreover, thdully applied to the self-consistent kinetic modeling of vari-
electron energy distribution functiotEEDP is typically ~ OUS low-pressure discharges, where the electron mean free
non-Maxwellian in these dischargg]. Hence, for accurate path is small: the capacitively coupled plasniass], the

: X . inductively coupled plasmag7-10, the dc discharges
calculation of the discharge characteristics at low pressuref11 17}, the afterglow13], and the surface-wave discharges

the EEDF needs to be computed self-consistently. Selff14) The additional references can be found in reviews
consistency is an important and difficult issue for the kinetic[15_17,.

simulations of a plasma. The EEDF, nonlocal conductivity, If gas pressure is lowered even furthéess than 10
and plasma density profiles are all nonlinear and nonlocallynTorr), the electron mean free path becomes comparable or
coupled. That is why, the self-consistency aspect of theven larger than the discharge dimension, and numerous col-
model is the main concern of this study. The so-called “nondisionless phenomena dominate the discharge characteristics
local” approach relies on the direct semianalytic solution of[18]. Therefore, wide utilization of low-pressure discharges
the Boltzmann equation in the limiting regime where thecalls for “upgrading” of nonlocal approach by taking into
electron energy relaxation length is much larger than the disaccount collisionless phenomena. In the present paper the
charge gap, but the electron mean free path is small conmonlocal approach is generalized for the low-pressure dis-
pared with the discharge dimensig8,4]. Under these con- charges to incorporate the collisionless heating and transit-
ditions the EVDF is almost isotropic and can be well time (electron temporal and spatial inejtiffects on plasma
approximated as a sum of the main isotropic part of theconductivity in the discharge description. The main goal of
EVDF, fy, and small anisotropic part of the EVDF,. Im-  the paper is to derive a general set of equatidasnulary)
portantly, the main part of the EVDF is a function of the total for the nonlocal approach with a rigorous, self-consistent
energy only[fo(e), wheree=mv?/2—ed¢(r), ¢(r) is the treatment of collisionless phenomena in inhomogeneous-
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plasmas. Similar approaches have been developed for calcteported elsewhere. The alternative approaches to the nonlo-
lation of the rf heating in tokamak23] and for an analysis cal approach are based on particle-in-cell simulations, and
of kinetic instabilities in intense beanig4]. only recently were capable of the detailed self-consistent,

The derivations are lengthy. Therefore, to be specific, théonlocal kinetic simulations of low-pressure discharges.
present analysis considers only an inductively couple The kinetic description of the anomalous skin effect is

plasma. But the approach has been designed in the mo ﬁsed on a well known mechanism of collisionless power

generalized way, so that derivations can be readily performe issipation—the Landau dampingd4]. In the infinite

f her disch E le. in R th i, lasma, the resonance particles moving with a velouity
or other discharges. For example, in Ref9] the capacitive 556 19 the wave phase velocity, so that v-k, intensively

discharge; in Ref20] the electron-cyclotron-resonance dis- jyteract with wave fields. Therefore, the collisionless elec-
charge and in Ref21] the surface-wave discharge were con-qp, heating(and the real part of the surface impedance
sidered with a self-consistent account for collisionless heatgepends on the magnitude of a Fourier harmonic of the elec-
Ing. tric field [E(k)] and the number of the resonant particles
Most of the previously reported theoretical studies assumef (v, = w/k),x||k]. That is why, the momentum acquired in
a uniform plasma, in a semi-infinif22] or a slab geometry the skin layer of widths is maximal if the projection of
[25]. In this case the analytical treatment considerably simvelocity perpendicular to the plasma boundary éxis di-
plifies, because electron trajectories are straight. In the semiection is of the order ofwd. If the interaction with the skin
infinite geometry, electrons traverse the region of the rf electayer is repeated in a resonant manner the momentum
tric field (skin layep and are reflected back into the plasma atchanges mount up. Therefore, the main contribution to the
the discharge walls. An acquired velocity kick then dissipate®lectron heating and the resistive part of the surface imped-
in the plasma on distances of the order of the electron meaance comes from these resonant electrons. The first unam-
free path and subsequent kicks can be assumed independdsiguous measurements of a bounce-resonance effect were
If the plasma dimension is small or comparable withthe  performed in a non-neutral plasma. In Ref5] it was shown
subsequent kicks are correlated. The resonance between tthat the heating rate increases by a factor df 49 the os-
wave frequency and the bounce frequency of the electronillation frequency of the externally applied rf field is in-
motion between the walls may result in modification of thecreased by a factor of 10 near the thermal electron bounce
nonlocal conductivity[26,27] and may yield an enhanced frequency. In a bounded plasma, the resonance condition re-
electron heating28-30. The anomalous skin effect has quires the bounce periofi, to be equal to one or several rf
been studied experimentally in cylindrice26] and planar electric field periodsT,=27n/w, wheren is an integer
dischargeq31]. Additional references can be found in the number. The maximum interaction occurs fo= 1 (see be-
reviews of classical and recent works on the anomalous skitow). For a slab of width., T,=2L/v, . The maximum elec-
effect in gas discharge plasmi@2,33. The theoretical stud- tron heating occurs if both aforementioned conditions are
ies in cylindrical geometry are much more cumbersome, andatisfied simultaneously, which givasé=v, and 2./vy
have been done for uniform plasma in R84 -3¢ and for =2#/w or L= 5= [27]. Hence, the optimum conditions for
a parabolic potential well in Ref37]. Qualitative results in  the power transfer to the plasma corresponds to the plasma
the cylindrical geometry are similar to the results in the planeof size comparable with three times the skin deptcause
geometry, therefore, in the present study only the onethe bounce frequency depends on the electrostatic potential,
dimensional slab geometry is considered. accounting for the plasma nonuniformity is important for a
For the case of a bounded uniform plasma, the electroeorrect calculation of the efficient power coupling.
static potential well is flat in the plasma and infinite at the As discussed before, the collisionless heating is deter-
wall (to simulate the existence of sheathk this square mined by the number of resonant particles, and, hence, is
potential well, electrons are reflected back into the plasmalependent on the EEDF. The EEDF, in its turn, is controlled
only at the discharge walls. In a realistic nonuniform plasmaby the collisionless heating. The only particles, which are in
however, the position of the turning points will depend onresonance with a wave, are heated by the collisionless heat-
the electron’s totalkinetic plus potentigl energy and the ing. It means that in the regime of the collisionless dissipa-
actual shape of the potential well, i.e., low total energy election, the form of the electron energy distribution function is
trons bounce back at locations within the plasma and magensitive to the wave spectrum. Therefore, the plateau in the
not reach regions of high electric field at all. As a result theEEDF can be formed in the regions of intensive collisionless
current density profiles in a nonuniform plasma may considheating, if the wave phase velocities are confined in some
erably differ from the profiles in a uniform plasma. The interval [46]. The evidences of a plateau formation for the
theory of the anomalous skin effect for an arbitrary profile ofcapacitive discharge plasma were obtained in Ra]. The
the electrostatic potential and a Maxwellian EEDF was de<cold electrons, which are trapped in the discharge center, do
veloped by Meierovictet al. in Refs.[38—4( for the slab  not reach periphery plasma regions where an intensive rf
geometry. Although some rigorous analytical results of non<electric field is located and, as a result, these electrons are
uniform plasmas have been reported, the detailed selfrot heated by the rf electric field. The coupling between the
consistent, nonlocal simulations related to such plasmas arEEDF shape and collisionless heating may result in nonlin-
a comparison with experimental data are lacking. Selfear phenomena: an explosive generation of the cold electrons
consistent, nonlocal simulations based on the developed, {#7]. The experimental evidences of the influence of colli-
this paper, approach were completed recently and presentgibnless phenomena on the EEDF shape were obtained in
in our separate publicatiorigd1,42] and will be additionally = Refs.[31,48-51.
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FIG. 1. The normalized magnetic field amplitude and its phase
for the case of cylindrical-like geometrislab geometry and two
antisymmetric currents at=0 andx=L) as functions of the nor- ) i _ !
malized coordinate/R, whereR=L/2. Lines denote the results of Uniform plasma as a fur21ct|20n ofzn_ormahged ‘_jeher v|x/vy for
the system of equation@5), (27), and(29) and symbols show the @=v and differentA =vtwyw/(c liw+»[%). Lines denote the re-
results from Ref[25] for w/Qy7=1.5, v/Qyr=0.3, andRw,/c sults of the system of equatiorig5), (27), and(29) and symbols
=4.5. The electron temperatureTis=2.5 eV and the uniform spa- SNoW the resuits from Ref22].
tial electron density isiy=10"2 cm™3.

FIG. 2. The normalized electric field amplitude for semi-infinite

Maxwell equation for the rf electric field, not presented in
Refs.[41,47. In Ref.[30] the present approach was applied
for capacitive discharge, assuming uniform plasma density in
the plasma bulk and taking into account only heating by the
lQ,scillating sheathgneglecting the rf electric field in the
tplasma bulk As it was shown in Ref[19] accounting for
the rf electric field in the plasma bulk may lead to significant
reduction of the collisionless heating. Therefore, these find-
ings call for different self-consistent calculations of capaci-
tively coupled plasma.

In the linear approximation the collisionless dissipation
does not depend explicitly on the collision frequency. How-
ever, as shown in Ref52], if the electron elastic collision
frequency is too small, heating can actually decrease due
nonlinear effects akin of the nonlinear Landau damping. A
low frequencies w<V;/é the nonlinear Lorentz force
eV,¢B,s/c, whereV,; is the electron oscillatory velocity/;
is the thermal velocity = /2T/m), andB,; is the rf mag-
netic field, has to be taken into acco(i4®,53.

The present paper presents a self-consistent system of
equations describing the nonlocal electron kinetics in a 1D
slab(bounded nonuniform plasma. The system consists of a
nonlocal conductivity operator and an average over fast elec-

tron motion kinetic equation for the_z EEDI_:. Transit-time | low-pressure discharges, where the energy relaxation
(nonloca) effects on the current density profile and the CO"Iength is large compared with the plasma width, the main
lisionless heating are of particular interest. Rigorous deriva—part of the EVDF is a function of the total energy ofll5—
tions for the nonlocal conductivity operator have been PEr17]. Therefore, we look forf="f,+ f,, wherefy(e) is a
formed. The analytic results of RdB8] for the Maxwellian function of the total energys, s=w-+o(x), where w
EEDF were generalized for the non-Maxwellian EEDF. The

spectral method was developed to find the rf electric field ————
profile. A quasilinear approach was used for calculating the v nonuniform plasma n(R)=n, 4
collisionless heating. The quasilinear theory developed in ¥ nonunfom plsma nOFn,
Ref.[29] was generalized for an arbitrary value of the colli-
sion frequency. As a result, the simulations can be done in a
wide range of the background gas pressures ranging from the
collisional case X<<6) to the fully collisionless case\(
>L). Self-consistency of the nonlocal conductivity operator 0.014
and the energy diffusion coefficient have been verified: both
yield the same expression for the power depaosition. The ro- . 3
bust time-averaging procedure was designed for the kinetic 0.0 0.5 1.0
equation in the most general way. As a result, the procedure xR

can be readily repeated for other discharges, see, for ex- ¢y 3 The profile of the normalized amplitude of the rf electric
ample, Refs[19,20|. Note that the previous papef$1,42  fio|y calculated for a bounded plasma in a slab geometry with and
presented self-consistent, nonlocal simulations based on thgout the ambipolar potentiab= — 4 (x/R— 1)? (in volts) for the
developed, in this paper, approach. These papers presentgmne parameters as in Fig. 1 for the following two cagbsthe
comprehensive numerical study and demonstrate a realistigectron density at the electrode,0), is equal to the electron den-
example of the developed approach. Moreover, we havsity of the uniform plasmany, i.e.,n(0)=n, and(2) the electron
added three numerical examples shown in Figs. 1-3, whicHensity in the centen(R), is equal tong, i.e.,n(R)=n,, respec-
demonstrate the developed spectral method for solving thively.

II. CALCULATION OF THE ANISOTROPIC PART
OF THE ELECTRON VELOCITY DISTRIBUTION
FUNCTION, f,

0.14

[ E(<VE(0) |
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=m(v;+vi+v9)/2 is the kinetic energyp=—ed is the elec-  ing angle. If the differential cross section does not depend on
tron electrostatic potential energy, agdis the electrostatic the polloidal scattering angle, the BGK approximation is ex-
potential.f, does not contribute to the electron dengitye  actly correc{58]. For partially ionized plasma, the electron-
integral f, over the velocity space is equal to zefb,d>v  neutral collisions are the most frequent scattering mecha-
=0), butf, contributes to the electron currefibe integral hism. In the low-pressure discharges typical electron
f, over the velocity space weighted with the electron veloc-energies are in the range 1-5 g} and the differential cross

ity is equal to zerof vf,d®v=0). Typically, the mean elec- section weakly depends on the polloidal scattering angle. As
tron flow velocity (V''=fvf,d3/[f,d3) is small com- & result, the BGK approximation has a good accul&s}.

pared with the thermal velocity;. Therefore, the isotropic Equation(5) can be solved by a number of different meth-
part of the EVDF is larger than the anisotropic p&t ©ds. First, let us consider a direct solution. Alternative deri-

~(V"IV) fo<f, [15-17. vation using Fourier series is performed in Appendix C. Af-
The Boltzmann equation for electron velocity distribution t€r some straightforward algebra described in Appendix A,
function reads the symmetric part of the EVDR;=1/2(f;, +f;_) is
given by
of, dafy  eEdx) df;  eE(x,t) a(fo+fy)
AT T m o, m AL
X y f1s(v,X)=—moVy (X,Sx)g, (6)
=C(f1+fo), oY)

_ _ - whereVy(x,8,)=1/2(V{', +V}), Vi, are the oscillatory
where Eg(X) is the space-charge stationary electric field,q|ocities of an electron with a gives,, * signs denote
Ey(x,_t) is_ the rf nonstationary electric field, ai@{ ) is the v,>0 andv, <0, respectively;
collision integral. In Eq(1), we used the fact that

oole) eBsed) ofole) _ dfole) 0 0 Wxewn)=-

Xy )
; v | coshd Ey(x")
XX m Ay XTgx e X

msinh® |

. ) ) XcosH®  —d')d7' +cosHD, — D)
because:, is constant along a trajectory. After applying the

standard quasilinear theory, E@) splits into two equations X , o
[29]: a linear equation fof, X . Ey(x")coshd'd7r’|, (7
of Jf;  eEd(x) af; eE/(xt) of
My, P BB of eBx iy o dx
at X m v, m vy = ——— ®
) x_|vx(X,e)]
. . .
and a quasilinear equation fbg, (I)(X,SX,UL)EJ (—iw+w)dr, ©
— X_
eE/(x,t) df; ———
Bl dh s ) _
m doy D (ey,0,)=P(Xy ,84,0,), (10)

where the overbar denotes space-time averaging over thehere x_(e,) and x.(e,) are the left and right turning

phase space available for the electron with the total energy points, respectively, for the electron with energy[corre-

[54-56. sponding to zero velocity, or e,=e@(x_)], 7 is the time
The rf electric fieldE(x,t) =Eo(x)exp(—iwt) and the of flight from the left turning pointx_(e,) to x, and v

anisotropic part of the EVDF, = f1¢eXp(~it) are harmonic = \[y2Z+,2. The functionsvi and® depend on the electron
functions, wherew is the discharge frequency. In what fol- speed via the collision frequenay(v).

lows the subscript 0 is omitted. Equati¢8) becomes In the local limit the electron mean free path is small
p df <6 and the phase is large Re[>1. Therefore, cost
_iwf1+vx_l|8 _evyEy(X)_Oz_Vfl_ (55  ~sinh®~1/2exp). The main contribution in both inte-
2 de grals in Eq.(7) are near the poink’=x and, sinced® =
(—iw+v)dr,

In the transformation from Ed3) to Eq. (5) the Bhatnager-
Gross-Krook (BGK) approximation was usedC(f;)=

—vf4, wherev is the transport collision frequency and we V;f* -
introduced a new variable, namely, the total energy along the

X axis, sxzmv§/2+ ¢(X). There have been a number of 55 it should be in the local limit.

studies, which explored the effects of the exact collision in-

tegral on collisionless phenomef&7,58. These treatments IIl. CALCULATION OF NONLOCAL CONDUCTIVITY

use expansion in series of spherical functions in velocity

spaces. The exact calculations are important only if the col- Knowing the EVDFf,5, one can calculate the current
lision frequency is a strong function of the polloidal scatter-density

e Ey(x)

m (=it 1D
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er.n3/2
': 4W\/_f flSU d V.

Substitutingf s from Eg. (6) into Eq. (12) and making the

(12

transformation to the spherical coordinates in the velocity

space dv,dv,dv,=v2dv sin9dddy
=vy,/v,), EQ.(12) becomes

(cosd=v,/v;tanys

fo
j(x)= e\/—m3/2f 2Vrf ddig) v,

13
where the average over velocity direction fao([oﬁv”) is

(vivyhy= ff Vi (X,8x,0)[ sin971% cosy]?dyd .

(14

Becausé\/;fdoes not depend o#, integration ovenr) angle
can be completed. Changing the integral frainto v,
=y cosv gives

1 (v
(UZV”— fv;f(x,sx,vl)(vz—vf)dvx (15

or
1 & e—&y
(v Vrf —_—— V(X840 )——dse,.
Y amywd e YT e = e (0) X( )
16

Substituting Eq(16) into Eq. (13) and changing integration

from v to ¢ yields

. S
J(X):EL(X){

€ E—E&
f B g, | S0
e(¥) Vex— @(X)

7

Further simplifications are possible if the collision frequencycurrent in the coil ax=0, and danyi
v is small (v<w) or v does not depend on electron velocity.

In this casev;f(x,sx,vl) is the only function of k,&,).
Integrating Eq.(17) in parts yields

J( )__Efoc fs Vrf( Sx) daxlf0(8)d8- (18)
e(x)| Jo(x) \e

If Vrf is a constant EQ.(18) gives ftrivial result j=
—en\/rf
Introducing a new functiod’(e),

l“(s)ELm]c

and integrating Eq(18) in parts one more time gives

ole)de (19

. rf
ej Vy (X'S)F(S)dg. 20

19772 o0 Ve e0

@(x)
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For the Maxwellian EVDFf, Eq. (20) is equivalent to the
result of Libermaret al. [38].

Substituting Eq(7) into Eq.(20) yields the nonlocal con-
ductivity operator

X L
Jy(x)= Jo G(x,x")Ey(x")dx" + L G(x",x)Ey(x")dx’,

(21
where
1 e (= cosh® cosH® , —P")
G(x,x")== -
2 ‘/ max(‘P ¢® ) Slnh(I)+
I'(e
(e) (22)

\/e —@(x) e — @(x’ )

Note thatG(x,x’) has a logarithmic singularity at=x’
[38], but because calculation of the electron current in Eq.
(21) requires additional integration, there is no singularity in
the current.

In the limit of large gap, wheré<i<L, Re(®)>1 and
cosh® cosh®  —®")/sinhd, —coshd exp(—=P'), and the
region of integration in Eq.21) beyond the skin layer can be
omitted. In the local limit, where\ <6, Eq. (21) gives the
standard local conductivity, see Ed.J).

IV. CALCULATION OF THE TRANSVERSE rf ELECTRIC
FIELD PROFILE

Maxwell’'s equations can be reduced to a single scalar
equation for the transverse electric fi¢RP],

dzEy w? Ao
—F+ —2Ey= — —z[j(X)+|5(X)—
Cc

- Sanil S(x— L)1,

(23

where the electron currentis given by Eq.(21), | is the
=0, if there is the
grounded electrode and no coil with the current located at
x=L, andd,j=1, if there is a coil with the current| at
x=L. The 1D slab system of two currents flowing in oppo-
site directions describes very well a cylindrical configuration
with the radiusR, where a coil produces rf currents at both
plasma boundaries=0 andx=2R, R=L/2 [25,26. Equa-
tions (23) and (21) can be solved numerically using a finite
difference scheme. There is a major difficulty in such an
approach. Straightforward computing of the complex
Green’s function in Eq(22) is slow and time consuming
[41]. The better approach is to solve the integro-differential
equation(23) making use of a spectral method, where the
electric field is represented as a sum of harmonic functions.

A. Solving the Maxwell equations for the rf electric field using
Fourier series

System that has an antennaxat0 and a grounded elec-
trode atx=L in the uniform plasma was studied theoretically
in Ref.[27]. The paper$25,35 considered a cylindrical-like
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system in the uniform plasma. Both papers used Fourier se-
ries to solve Maxwell's equations. Here, we generalize the

procedure for a case of a nonuniform plasma.

PHYSICAL REVIEW E 68, 026411 (2003

1 j'— " nTer
T Ocos( 1X)co T X|.

G n(e)= (30

Similar to the previous analysis, it is convenient to con-

tinue the rf electric field symmetricalli, (x) = E,(—Xx) out-

side of the slab. Then, the electric field is given by Fourier

series[27]

E,(X) =S§O E cogkeX), (24)

wheresis an integerk,=(2s+ 1)#/(2L) for the case of the
grounded electrode, arld=(2s+ 1) /L for the case of the
cylindrical-like system. Substituting Ed24) into Eq. (23)
and integrating with the weight 2 cdgX)/L over the region
[O,L] yields

2 Amiw 21[1+ Sapngi ]
, @ = _ . anti,k
<_ks+§ —s— C2 Ist L f (25)
where
2 (L
it | i0ocoskadx (26)

For a cylindrical-like system coefficien; (&) are particu-
larly simple:

1
G|,n(8):§5(2|+1),|n\, (31)

and the generalized plasma dielectric function for a given
Maxwellian EEDF is

2378 =6512(%), (32

whereZ(¢) is the “standard” plasma dielectric function,

= exp(—t?)

dt—— (33)

2(6)=7 V2 f

System of equation&25), (27), and(29) is identical to the
results of Ref[25] for cylindrical-like configuration uniform
plasma with a Maxwellian EEDF. Figure 1 shows the calcu-
lated profile of the rf magnetic field and its comparison with
the analogous result from RdR5] for w/Q,1=1.5, v/Q

Substituting the equation for the current density from Appen-=0.3, andRw,/c=4.5, wherew, is the plasma frequency

dix C, Eq.(C9), gives

0

1
- gen
BsT 10 2 22

w+iv )

e
Is¥m (25+1)Qpr)’

where Qpr=Vym/L, and we introduced the generalize
plasma dielectric function
n;;w J;

2 (2s+1)7mQ
?“(§>_\f—( S L)” bT
Gsn(8)Gi n(e)

I'(e)
Qp(e)—(28+1)Qp1é Qy(e)

(28)

where the coefficient§, () are the temporal Fourier trans-
form of coskx) in the bounce motion of the electron in the
potential well[dx/dt= —eEs(x)/m],

Gin(e)= (29

1
T f Cos{k|x(r)]cos( )dr

Finally, the Maxwell equatio25) together with the equa-
tions for the electron curreii27) and(29) comprise the com-
plete system for determining profiles of the rf electric field.

B. Examples of calculation of rf field profiles
for a given EEDF

In the limit of uniform plasmd Es(x)=0] 7=X/vy, T
=L/vy, and Eq.(29) gives

andR=L/2 is the half-width of the slab. The electron tem-
perature isT,=2.5 eV and the uniform spatial electron den-
sity is ng=102cm 3.

For the case of a sufficiently wide slabh$V;/w) the
results of the formalism described above coincide with the

d results from Ref[22] for a semi-infinite uniform plasma

with a Maxwellian EEDF as shown in Fig. 2. The parameter
A=v3w a)/(C2|Iw+ v|%) determines the square of the ratio
of the effective electron mean free path to the skin depth.
The parameteA can serve as a measure of “anomality” of
the rf field profiles[22]. For example, the rf electric field
profiles depart from a simple exponential function for large
A>0.5; see Fig. 2.

For a nonuniform plasma taking into account an ambipo-
lar potential makes simulation of the rf field profiles much
more cumbersome than for a uniform plasma. Nevertheless,
electric field profiles can be effectively computed making use
of the fast Fourier transform for numerical computation of
G n(e) coefficients in Eq(29). The off-diagonal coefficients
are generally very small, that is why, utilizing this spectral
method, makes computing much faster than the straightfor-
ward application of the finite difference method as it was
done in Refs[41,42. Figure 3 shows the rf electric field
profiles calculated for a bounded plasma in a slab geometry
with and without the ambipolar potentigl= — 4 (x/R—1)?

(in volts) for the same parameters as in Fig. 1 for the follow-
ing two cases(1) the electron density at the electrod¢),

is equal to the electron density of the uniform plasmg,

i.e.,, n(0)=ngy and (2) the electron density in the center,
n(R), is equal tong, i.e.,n(R)=ng, respectively. From Fig.

3 it can be seen that taking into account an ambipolar poten-
tial greatly alters the rf electric field profile.
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V. AVERAGING OF KINETIC EQUATION FOR THE MAIN
PART OF THE EEDF

Kinetic equation forf, averaged over the discharge pe-

riod is
afy e df, e L, . dfs

UXW_EESC(X)E_%R%Ey(x)w}zc(fo)y
’ (34
C(f)=Cg(f)+Cq(f)+ Cedf) +Cinei(f), (39
Ln=[ (7 =ndo. 36

J

§|(f)=w—W(UVe|f), (37

Jd Jd J
Cee(f):m<UDeemf +U(9—W(UVeef), (39
\/(W-I—s:)
Cme|(fo)=; {TVE(W‘Fﬁ)fo(EﬂLSE)_VEfO ,
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the gap #*>L), the first two terms on the left hand side of
Eqg. (34) are dominant and the sum of the first two terms
equals to zerdin an asymptotic series with the parameter
N*/L). Any function of the longitudinal energy,= mv§/2

+ ¢(x) nullifies the first two terms on the left hand side of
Eqg. (34). Therefore,f, is approximately a function o€,
only, not a function of both variablesv, separately. Simi-
larly, C¢,(f) is the largest term from the remaining terms in
the equation. Any isotropic function of the electron speed
nullifies C{,(f,) =0. To satisfy both conditions: isotropy and
to be a function ok, , fo must be a function of total energy
e=mv?/2+ ¢(x) only [56]. This assumption was verified
experimentally in Refs[16,17,59 and by comparison with
particle-in-cell simulations in Ref[5] for a capacitive
coupled plasma, in Refd8,36] for a inductive coupled
plasma, and in Ref20] for an electron cyclotron resonance
(ECR) discharge.

To obtainf, it is necessary to average E&4) over fast
electron bouncing and over all velocity angles. First, let us
average over fast electron bouncing. In order to do so, we
integrate all terms of Eq34) over the full period of electron
bouncing,

X, dX xt dX
édtL(X,vx)EJ U—L(X,vx>0)+f —L(X,04,<0),
X

(39
X_ X_ |Ux|

where w=mv?/2 is the kinetic energy . Here, the elastic _ _ _
collision integral splits into two partsCe(f)=CY(f)  WhereL(x,v,) is a term in Eq.(34). Because the first two
+C2/(f), whereCY,(f) is the part of the elastic scattering {€rms represent the full time derivatigd/dt along the tra-
collision integral, which takes into account only changes ofi€ctory, they disappear after integration, and Eg¢) be-
the electron momentum in the collisions with differential ©0Mes
cross sectiomo and C{(f) accounts for an energy change

in the elastic collisionsC.(f() is the electron-electron col-

lision integral andC;,¢|(fo) is the sum over all inelastic

collisions with the electron energy los§ and inelastic col-
lision frequencyvy (see Refs[5,20]) for more details on
simulating ionization and wall lossedn Eq. (38), the coef-
ficientsDge,Vee, Ve are given by 55,60

2m
VeIZVWVv (40)
2Wvge( (W
Vee=—0 f dwywf |, (42)
0
4 Wree[ (W %
Dee==% J dww3’2f+w3’2J dwf|, (42
3 n 0 w
47A £
Vee:%v (43
m<v

wherev, is the Coulomb collision frequency and,. is the

Coulomb logarithm. Note that at large electron energies

>Te, Vee™2Wree, and Dge~2WT.vee, Where Tg

éd ® ReE? dfl—fﬁdCf 44
- o y(X)d—vy = tC(fo). (44
Second, we integrate EG14) over all possible perpendicular
velocities dv,dv, with a given total energym(vf,+v§)
<2¢ [54,56].

Total averaging is a triple integral

L(x,v)z%f f dv,dv, 3€ dtL(x,v),

where factor 1/4 is introduced for normalization purposes.
Note that integral in Eq(45) describes averaging over all the
phase space available for the electron with the total energy
e, and can be rewritten as

1
Ef f dvydv, 3@ dtL(x,v)

= %f dXd3V5(8_W_(p(X))L(X,V)_ (46)

(49

If L(x,v) depends on the electron velocity only via speed
which is the case fo€g,(f), Cef), andCi,e () collision

=2["dww¥2f/n and C(f) describes relaxation of the integrals, then integration in E¢46) simplifies to become

EEDF to a Maxwellian.
If the electron energy relaxation lengfoughly inelastic
electron mean free pattt* =V /v) is large compared with

L(x,v)(s)zfxx+dXU(x,s)L(x,v(x,s)), (47)
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v(X,e)=+2[e—@(X)]/m.

(48)

Thus, averaging of the collision integral terms, responsible

for energy relaxation in Eq44), reduces to integrating over

the entire available discharge volume weighted with the ve-

locity for an electron with a given total energy This pro-
cedure is identical for both collisionlesa ¥L) and colli-
sional (<L) cases(compare Eq(45) with the collisional
(AsL) case[3,4,54). However, as we shall see next, the
electron heating in the rf electric field differs greatly for col-
lisionless and collisional cases.

A. Calculation of the nonlocal energy diffusion coefficient

The term describing electron heating originates from th
averaged left hand side of E@4). Making use of the aver-
aging procedure, Eq46), the left hand side of Eq(44)
becomes

eEy(x t) df,
T

=—f dxdPvéle —w—p(X)]

* dfy
XR Ey(X)d—Uy .

Using chain rule for integration imlv, and the fact that

(49)

do(e —w—¢)/dvy=mv,dé(e —w—¢)/de, Eq. (49) be-
comes
eE,/(xt) df; emd
Td—vy—gd—Re dXd3V§[8 W— (X )]
XvyEX (X)f;. (50

Substitutingf; from Eq.(6) and integrating in the velocities
vy andv, yields

eEy(x t)dfl d % 51
m dvy de fds’

where we introduced the energy diffusion coefficiént,

——REJ de,(e— X)J

As shown in Appendix B, Eq52) is the general expression
for the energy diffusion coefficient. In the limiting regime of
the small mean free path\&6), D, tends to the known

collisional limit [3,4,54. In the intermediate pressure range
(6<A<L), Eg. (52 corresponds to the hybrid heating,

(& x dX
: —E*(x)v”<x £y).

(52
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: e € 2 E— &y
Dle)= 2 fo Ao Bynledl g o
x Y (53)
[Qp(e)N— w]?+ 12
where
1 T
EY”(SX):;[L E,(#)cogne)do|. (54)

Note that expression fdD (&) in Eq. (53) accounts for the
bounce resonanc€,(e,)n=w and the transit-time reso-

fhancew=uv/4, which corresponds to maxima & ().

VI. SELF-CONSISTENT SYSTEM OF EQUATIONS

In summary, the self-consistent system of equations for
the kinetic description of low-pressure discharges accounting
for nonlocal and collisionless electron dynamics contains the
averaged kinetic equation fdg, the Maxwell equation for
the rf electric field, the quasineutrality condition for the elec-
trostatic potential, and the ion density profile given by fluid
conservation equations for ion density and ion momentum.
These are given as follows.

(1) The averaged kinetic equation fég reads

d  —dfy d—
- &(De'ipDee)a_ &[Vee_’_vel]fo

(W+ep)
Jw

=> | vi(w+s)) fo(e+el)—vitfo

X
(55

where the over bar denotes averaging according to4f),
and D, is given by Eq.(42), Ve by Eq. (41), V¢, by Eq.
(40), andD, by Eq.(52) or by Eq.(53).

(2) The rf electric field is determined from the Maxwell
equation(23), where the electron current is given by Eq.
(21). A robust procedure to solve these equations by the fast
Fourier transform method is described by E¢(&5), (27),
and (29).

(3) The electrostatic potential is obtained using the
quasineutrality condition

J( foe) e px)ds,
o(x

ni(x)

(56)

wheren;(x) is the ion density profile given by a set of fluid

where the electron motion is collisionless in the skin Iayer,Conservati_on equa_tions for i(_)n density and ion_mome_ntum
but the randomization of the velocity kick acquired during a[41]. Euation (56) is solved in the form of a differential
single pass through the skin layer occurs due to collisions iequation[5]

the plasma bulk28]; and in the collisionless limit, where the
mean free path is largen(>L), Eq. (52) describes collision-
less heating(see Appendixes B and C for detaildf the

dgo_

dIn[n;(x)]
& ’

__Tscr,
Te (X) dX

(57)

collision frequency does not depend on the kinetic energy the

direct substitution o/}'from Eq.(7) gives

whereT;%'(x) is the electron screening temperature,
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-1
1 (= de R S P
TSC(x) = f ) 58 —J’ e+ E.dr'+Ce”+
e ( ) 2n(x) o(x) 0(8) /—8—(,0()() ( ) X y
X4 ,
(4) The power deposition can be computed as = fx e (*+"PIE/d7r' +Ce P+
L E* ()i or
P(x)=5REEy (X)j(x)]. (59
— 1 X+ ! ! !
Substituting Eq.(17), integrating over the discharge C_Sinhq)+J_ costid., —®"Ed7". (A6)

length, and changing the integration order, Exf) becomes
Here = (x), ®'=d(x’), and d , =d(x,). f, enters

* dfo(e) into the current calculation only as a suf, +f;_ . There-
pP=— \/ZmJO D.(g) de de. (60) Ig\rze), we computef,;=1/2(f,, +f;_) from Egs.(Al) and

Equation(60) can be used as a consistency check. df <
flo= euyd—;{cCoshcp—f sinh(®—®")E,(6')dr |,
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(A7)
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where
APPENDIX A: DERIVATION OF f4 e 1 X4
Viee — coshd)J cosh®, —d')E/dr’'
Direct integration of Eq(5) yields y m sinh® x_ y

X

sinh(®—®")Ejd7’ |. (A9)

—sinh<b+f

X

dfo| [ .
f1+(X,U):evyd—;|:j e*[‘b(X)*d)(x )]E/dT!_FClef(IJ(x)
X_

(A1) Splitting the first term into two integral$§f=f§_+f§*,
and accounting for the fact that

df X ,
fl(X,v)=EUyd—:[—f eP(9)—d(x )E;,df’—l-Cze‘I)(x)

X_

cosh® cosHd , —P')—sinhd  sinhd—-d')

(A2)
=cosh®’'cosHd_, —d') (A10)
where £ signs denotey,>0 andv,<O0, respectively, and
for brevity we introduced, =E(x') anddr=dx/|v,|, and ~ 9IVES
e

rf

X+
coshd)f Ejcosh®  —®')d7’
X

CD(X)ELX (—iw+ v)dr. (A3) Yy =~ i Sinha,

X
+cosl1<b+—<1>)f Eycoshd'd7’ |. (A11)
X_

The two constant$,,C, are to be determined from the
boundary condition at the turning points. The EVDF contin-
ues at the turning points

APPENDIX B: DIFFUSION COEFFICIENT IN THE
fo(x ) =fo (x0), fio(x)=fi(x).  (Ad) ENERGY SPACE

The equation for the energy diffusion coefficient
Substituting the boundary condition at the turning points,

Egs.(A4), into Egs.(Al) and(A2) yields e e X, dx .
D.=—-—Re dsx(s—sx)J —EX(X)V, (X,£y)
4m 0 X_ UX y y
and has correct limits in collisional and collisionless cases.
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1. Collisional caseA<é

— *
In the collisional case, the mean free path is small. Sub- 1= sinh® . J By (x)d7 COShCDj X')
stituting V;f from Eqg.(11) into Eq.(B1) gives
xXcosi®  —d')d7’' +cosHd . — D)
5 e? R d ( )fm dx .
=——Re - T— ! ’ ’
=g ex(e—ed | - 2(er—w)im xfx E,(6")coshd’dr
*
E (X)Ey(X) (B2) The term in the brackets can be expressed as
—iw+tv

X4
. . . . coshd , cosh® E,coshd’'d7’
Changing the order of the integration and accounting for the * Lf y 7

fact that
X
+sinh® . cosh(I)J "E,sinhd’d7’
& e— gy 2 X
. dsxﬁ=§v .
0 V —¢@)/m
(&x—¢) +sinh<I>J E,cosh®’d7’
X_
e2 3 H ‘
_< 2 Therefore,
D, 6Re dx|Ey| D) (B3)
7 SO f E;cosh®’d fX+E*’ hd'dr' +7
which corresponds to the collisional cd4e,17). sinh® cos T . Y cos T b

2. Hybrid case 6<A<L where

In the hybrid case, collisions are rare during the electron
motion in the skin layer. Therefor@sf’,r -+ Is simply the veloc-
ity “kick” due to the rf eIectrlc field. Recalling that

Vi (x,e)= (Vi +Vi")/2, the last factor in Eq(B1) can be +sinh<Dfx
written as

Xy X4
Ilzf Eydr coshcbf Eysinh®’d7’
X_ X

X_

E§cosh®’dr’}.

1 e (x+dx Integrating in parts gives
-z —J —EJ (VI (X,85)

2m/y
:<% jg dT—dAZV(T) AVy(T)>
In the collisionless limit, sinkb=i sinw7+vrcoswr. Be-
1 cause the energy diffusion coefficient is determined by the
= Z(Avim), (B4)  real part of the integral and the real part of the phase is small
(~wv), Z; can be neglected. Therefore,

Xy X
Il:f sinhdbdr{f [EyEy +EyEJ Jcoshd d7’
X_ X_

whereédr is an integral along the electron trajectory enter-
ing and leaving the skin layedV, ., is the total velocity kick D8=—Re dsx(s ex)coth® . E coswr'd7r’
after a single pass through the skin layer, and the angular

brackets denote averaging over phases of the rf field. Equa- X o o
tion (B1) simplifies to X . Ey coswr'd7, (B6)
e 5 where sinhb , =i sinwT+vTcoswT. The main contribution
:gfo dex(e—ex)(AVy,). (B5  comes from the points whereoT=mn and cothd.
=2, NwT—mn):
In the limit of a uniform plasma Eq.B5) was proposed in
Refs.[28,36]. D,(e)= E dsxlEf| (e—&,)8(wT(ey)—mn),

(B7)
3. Collisionless casa>L

The energy diffusion coefficient, E¢B1), is determined Ef(e,)= fx+(£x)Ey(X')COSwT'dT/. (B8)
by the following integral:szifE;‘(x)V’yfdr. Substitution x—(ex)

of V;f from Eqg. (Al11), This corresponds to the pervious results of REZ9].
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APPENDIX C: ALTERNATIVE DERIVATIONS IN
FOURIER SPACE

PHYSICAL REVIEWEB, 026411 (2003

1
Eyn(sx): P (C7)

foﬁEy( f)cogn 0)d0} .

The direct calculations described in the previous sections
are rather cumbersome. The alternative derivation can b®laking use of Fourier series, Eq&€4) and (C6), gives

made easier using Fourier series.

It is convenient to introduce the variable angle of the

bounce motion,

wsgnvy) [  dx
T(ey) x,lvx(gx)| ’

O(X,e4) = (Cy

whereT is half of the bounce period of the electron motion

in the potential wellp(x), which is given by

. dfy
f1s(X,84) = —moyVy (X,SX)E,

where

Eyncog no(x)]

mO—tety (P

e %
V;f(X,SX): A 2

M p="«

Equation(C8) is the alternative form of EA11).

xi dx
T(sx)zj —_— (C2) Substituting the functiorV}'(x,e,) from Eg. (C8) into
x lux(ex)] Eq. (20) gives the current density
The bounce frequency for the electron in the potential well is 5

Qp(ey)=7IT(&y). Utilizing angle variable, Eq(5) simpli-
fies to become

. afy dfy
—wa1+Qb(9—0|€x—vyeEy(0)¥=—Vfl. (C3

We shall use Fourier series in variatdle

g(x,e)= 2 gnexp(ing), (eZ)

Note that in the last integral, the region<®< 7 corre-

sponds taw,>0, and the region- #< <0 corresponds to
vy<0. Utilizing Fourier series, Eq(C5), the Boltzmann
equation becomes

(inQb—iw+v)fln=eEynvyd—;, (C8)

where

I'(e) Eypcodno(x)]
S_QD(X) inQb—iw-l— 14

J(X)Zm o

J<p(><)

The averaged energy coefficient is given by Hs{l). Sub-
stituting the functiom/;f(x,sx) from Eqg. (C8) into Eq.(B1)
gives

(C9

2 &

e
DSIRRG . dsx(s—sx)f

X+dXE*

s vy (X)
Eyncogno(x)]

n=—x inQb_iw+V

or

|Eyn(8x)|2(8_8x)V
Qe[ Qp(s,0n— 0]2+ 2}
(C10

Note that Eq(C10 is valid for any collision frequency and
Eq. (B7) is valid only for v<w.

E Sds

n=—w Jo

D.(5) me?
&)= ——
4m?
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