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Self-consistent system of equations for a kinetic description of the low-pressure discharges
accounting for the nonlocal and collisionless electron dynamics
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In low-pressure discharges, where the electron mean free path is larger or comparable with the discharge
length, the electron dynamics is essentially nonlocal. Moreover, the electron energy distribution function
~EEDF! deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-
pressure discharges requires knowledge of the nonlocal conductivity operator and calculation of the non-
Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile
and a Maxwellian EEDF. In the present study, a self-consistent system of equations for the kinetic description
of nonlocal, nonuniform, nearly collisionless plasmas of low-pressure discharges is derived. It consists of the
nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF.
The importance of accounting for the nonuniform plasma density profile on both the current density profile and
the EEDF is demonstrated.
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I. INTRODUCTION

Low-pressure radio-frequency discharges are extensi
utilized for plasma processing and lighting@1#. Simulation of
discharge properties is a common tool for optimization of
plasma density profiles and ion and electron fluxes. Rec
plasma technology tends to decrease the gas pressures
to the millitorr range. For these low pressures it is easie
maintain uniform plasmas with well controlled paramete
Due to the large value of the electron mean free pathl the
electron current is determined not by the local rf electric fi
~Ohm’s law!, but rather is a function of the whole profile o
the rf electric field on distances of the order ofl ~anomalous
skin effect!. Therefore, a rather complicated nonlocal co
ductivity operator has to be determined for the calculation
the rf electric field penetration into the plasma. Moreover,
electron energy distribution function~EEDF! is typically
non-Maxwellian in these discharges@2#. Hence, for accurate
calculation of the discharge characteristics at low pressu
the EEDF needs to be computed self-consistently. S
consistency is an important and difficult issue for the kine
simulations of a plasma. The EEDF, nonlocal conductiv
and plasma density profiles are all nonlinear and nonloc
coupled. That is why, the self-consistency aspect of
model is the main concern of this study. The so-called ‘‘no
local’’ approach relies on the direct semianalytic solution
the Boltzmann equation in the limiting regime where t
electron energy relaxation length is much larger than the
charge gap, but the electron mean free path is small c
pared with the discharge dimension@3,4#. Under these con-
ditions the EVDF is almost isotropic and can be w
approximated as a sum of the main isotropic part of
EVDF, f 0, and small anisotropic part of the EVDF,f 1. Im-
portantly, the main part of the EVDF is a function of the to
energy only@ f 0(«), where«5mv2/22ef(r ), f(r ) is the
1063-651X/2003/68~2!/026411~12!/$20.00 68 0264
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electrostatic potential#, instead of being a function of veloci
ties and spatial coordinates as in a general casef 0(r ,v). This
assumption allows significant simplifications of the Bol
mann equation, which effectively reduces from a s
dimensional~three dimensional in coordinate and three d
mensional in velocity space! problem in phase space to
one-dimensional (1D) problem for f0(«) as a function of
only «. The final 1D equation for the electron energy dist
bution function is the temporal-spatial averaged Boltzma
equation over the phase space available for the electron
a given total energy«. The nonlocal approach is the cas
opposite to the local description of plasma, wheref 0(r ,v)
can be assumed as a function of only kinetic energy and
local rf electric field f 0„mv2/2,E(r )…, and gradients of the
local rf electric field and influence of the ambipolar elect
field are neglected. The nonlocal approach has been suc
fully applied to the self-consistent kinetic modeling of va
ous low-pressure discharges, where the electron mean
path is small: the capacitively coupled plasmas@5,6#, the
inductively coupled plasmas@7–10#, the dc discharges
@11,12#, the afterglow@13#, and the surface-wave discharg
@14#. The additional references can be found in revie
@15–17#.

If gas pressure is lowered even further~less than 10
mTorr!, the electron mean free path becomes comparabl
even larger than the discharge dimension, and numerous
lisionless phenomena dominate the discharge characteri
@18#. Therefore, wide utilization of low-pressure discharg
calls for ‘‘upgrading’’ of nonlocal approach by taking int
account collisionless phenomena. In the present paper
nonlocal approach is generalized for the low-pressure
charges to incorporate the collisionless heating and tran
time ~electron temporal and spatial inertia! effects on plasma
conductivity in the discharge description. The main goal
the paper is to derive a general set of equations~formulary!
for the nonlocal approach with a rigorous, self-consist
treatment of collisionless phenomena in inhomogeneo
©2003 The American Physical Society11-1
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plasmas. Similar approaches have been developed for c
lation of the rf heating in tokamaks@23# and for an analysis
of kinetic instabilities in intense beams@24#.

The derivations are lengthy. Therefore, to be specific,
present analysis considers only an inductively coup
plasma. But the approach has been designed in the m
generalized way, so that derivations can be readily perform
for other discharges. For example, in Ref.@19# the capacitive
discharge; in Ref.@20# the electron-cyclotron-resonance di
charge and in Ref.@21# the surface-wave discharge were co
sidered with a self-consistent account for collisionless he
ing.

Most of the previously reported theoretical studies assu
a uniform plasma, in a semi-infinite@22# or a slab geometry
@25#. In this case the analytical treatment considerably s
plifies, because electron trajectories are straight. In the s
infinite geometry, electrons traverse the region of the rf el
tric field ~skin layer! and are reflected back into the plasma
the discharge walls. An acquired velocity kick then dissipa
in the plasma on distances of the order of the electron m
free path and subsequent kicks can be assumed indepen
If the plasma dimension is small or comparable withl, the
subsequent kicks are correlated. The resonance betwee
wave frequency and the bounce frequency of the elec
motion between the walls may result in modification of t
nonlocal conductivity@26,27# and may yield an enhance
electron heating@28–30#. The anomalous skin effect ha
been studied experimentally in cylindrical@26# and planar
discharges@31#. Additional references can be found in th
reviews of classical and recent works on the anomalous
effect in gas discharge plasmas@32,33#. The theoretical stud-
ies in cylindrical geometry are much more cumbersome,
have been done for uniform plasma in Refs.@34–36# and for
a parabolic potential well in Ref.@37#. Qualitative results in
the cylindrical geometry are similar to the results in the pla
geometry, therefore, in the present study only the o
dimensional slab geometry is considered.

For the case of a bounded uniform plasma, the elec
static potential well is flat in the plasma and infinite at t
wall ~to simulate the existence of sheaths!. In this square
potential well, electrons are reflected back into the plas
only at the discharge walls. In a realistic nonuniform plasm
however, the position of the turning points will depend
the electron’s total~kinetic plus potential! energy and the
actual shape of the potential well, i.e., low total energy el
trons bounce back at locations within the plasma and m
not reach regions of high electric field at all. As a result t
current density profiles in a nonuniform plasma may cons
erably differ from the profiles in a uniform plasma. Th
theory of the anomalous skin effect for an arbitrary profile
the electrostatic potential and a Maxwellian EEDF was
veloped by Meierovichet al. in Refs. @38–40# for the slab
geometry. Although some rigorous analytical results of n
uniform plasmas have been reported, the detailed s
consistent, nonlocal simulations related to such plasmas
a comparison with experimental data are lacking. S
consistent, nonlocal simulations based on the developed
this paper, approach were completed recently and prese
in our separate publications@41,42# and will be additionally
02641
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reported elsewhere. The alternative approaches to the no
cal approach are based on particle-in-cell simulations,
only recently were capable of the detailed self-consiste
nonlocal kinetic simulations of low-pressure discharges@43#.

The kinetic description of the anomalous skin effect
based on a well known mechanism of collisionless pow
dissipation—the Landau damping@44#. In the infinite
plasma, the resonance particles moving with a velocityv
close to the wave phase velocity, so thatv5v•k, intensively
interact with wave fields. Therefore, the collisionless ele
tron heating~and the real part of the surface impedanc!
depends on the magnitude of a Fourier harmonic of the e
tric field @E(k)# and the number of the resonant particl
@ f (vx5v/k),xik#. That is why, the momentum acquired
the skin layer of widthd is maximal if the projection of
velocity perpendicular to the plasma boundary (x- axis di-
rection! is of the order ofvd. If the interaction with the skin
layer is repeated in a resonant manner the momen
changes mount up. Therefore, the main contribution to
electron heating and the resistive part of the surface imp
ance comes from these resonant electrons. The first un
biguous measurements of a bounce-resonance effect
performed in a non-neutral plasma. In Ref.@45# it was shown
that the heating rate increases by a factor of 104 as the os-
cillation frequency of the externally applied rf field is in
creased by a factor of 10 near the thermal electron bou
frequency. In a bounded plasma, the resonance condition
quires the bounce periodTb to be equal to one or several
electric field periods:Tb52pn/v, where n is an integer
number. The maximum interaction occurs forn51 ~see be-
low!. For a slab of widthL, Tb52L/vx . The maximum elec-
tron heating occurs if both aforementioned conditions
satisfied simultaneously, which givesvd5vx and 2L/vx
52p/v or L5dp @27#. Hence, the optimum conditions fo
the power transfer to the plasma corresponds to the plas
of size comparable with three times the skin depth.Because
the bounce frequency depends on the electrostatic poten
accounting for the plasma nonuniformity is important for
correct calculation of the efficient power coupling.

As discussed before, the collisionless heating is de
mined by the number of resonant particles, and, hence
dependent on the EEDF. The EEDF, in its turn, is control
by the collisionless heating. The only particles, which are
resonance with a wave, are heated by the collisionless h
ing. It means that in the regime of the collisionless dissip
tion, the form of the electron energy distribution function
sensitive to the wave spectrum. Therefore, the plateau in
EEDF can be formed in the regions of intensive collisionle
heating, if the wave phase velocities are confined in so
interval @46#. The evidences of a plateau formation for th
capacitive discharge plasma were obtained in Ref.@30#. The
cold electrons, which are trapped in the discharge center
not reach periphery plasma regions where an intensiv
electric field is located and, as a result, these electrons
not heated by the rf electric field. The coupling between
EEDF shape and collisionless heating may result in non
ear phenomena: an explosive generation of the cold elect
@47#. The experimental evidences of the influence of co
sionless phenomena on the EEDF shape were obtaine
Refs.@31,48–51#.
1-2
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SELF-CONSISTENT SYSTEM OF EQUATIONS FOR A . . . PHYSICAL REVIEW E68, 026411 ~2003!
In the linear approximation the collisionless dissipati
does not depend explicitly on the collision frequency. Ho
ever, as shown in Ref.@52#, if the electron elastic collision
frequency is too small, heating can actually decrease du
nonlinear effects akin of the nonlinear Landau damping.
low frequencies v!VT /d the nonlinear Lorentz force
eVr f Br f /c, whereVr f is the electron oscillatory velocity,VT

is the thermal velocity (VT[A2T/m), andBr f is the rf mag-
netic field, has to be taken into account@49,53#.

The present paper presents a self-consistent system
equations describing the nonlocal electron kinetics in a
slab~bounded! nonuniform plasma. The system consists o
nonlocal conductivity operator and an average over fast e
tron motion kinetic equation for the EEDF. Transit-tim
~nonlocal! effects on the current density profile and the c
lisionless heating are of particular interest. Rigorous deri
tions for the nonlocal conductivity operator have been p
formed. The analytic results of Ref.@38# for the Maxwellian
EEDF were generalized for the non-Maxwellian EEDF. T
spectral method was developed to find the rf electric fi
profile. A quasilinear approach was used for calculating
collisionless heating. The quasilinear theory developed
Ref. @29# was generalized for an arbitrary value of the co
sion frequency. As a result, the simulations can be done
wide range of the background gas pressures ranging from
collisional case (l!d) to the fully collisionless case (l
.L). Self-consistency of the nonlocal conductivity opera
and the energy diffusion coefficient have been verified: b
yield the same expression for the power deposition. The
bust time-averaging procedure was designed for the kin
equation in the most general way. As a result, the proced
can be readily repeated for other discharges, see, for
ample, Refs.@19,20#. Note that the previous papers@41,42#
presented self-consistent, nonlocal simulations based on
developed, in this paper, approach. These papers pres
comprehensive numerical study and demonstrate a rea
example of the developed approach. Moreover, we h
added three numerical examples shown in Figs. 1–3, wh
demonstrate the developed spectral method for solving

FIG. 1. The normalized magnetic field amplitude and its ph
for the case of cylindrical-like geometry~slab geometry and two
antisymmetric currents atx50 andx5L) as functions of the nor-
malized coordinatex/R, whereR5L/2. Lines denote the results o
the system of equations~25!, ~27!, and~29! and symbols show the
results from Ref.@25# for v/VbT51.5, n/VbT50.3, andRvp /c
54.5. The electron temperature isTe52.5 eV and the uniform spa
tial electron density isn051012 cm23.
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Maxwell equation for the rf electric field, not presented
Refs.@41,42#. In Ref. @30# the present approach was applie
for capacitive discharge, assuming uniform plasma densit
the plasma bulk and taking into account only heating by
oscillating sheaths~neglecting the rf electric field in the
plasma bulk!. As it was shown in Ref.@19# accounting for
the rf electric field in the plasma bulk may lead to significa
reduction of the collisionless heating. Therefore, these fi
ings call for different self-consistent calculations of capa
tively coupled plasma.

II. CALCULATION OF THE ANISOTROPIC PART
OF THE ELECTRON VELOCITY DISTRIBUTION

FUNCTION, f 1

In low-pressure discharges, where the energy relaxa
length is large compared with the plasma width, the m
part of the EVDF is a function of the total energy only@15–
17#. Therefore, we look forf 5 f 01 f 1, where f 0(«) is a
function of the total energy«, «5w1w(x), where w

e

FIG. 2. The normalized electric field amplitude for semi-infini
uniform plasma as a function of normalized depthu iv1nux/vT for
v5n and differentL5vT

2vp
2v/(c2u iv1nu3). Lines denote the re-

sults of the system of equations~25!, ~27!, and ~29! and symbols
show the results from Ref.@22#.

FIG. 3. The profile of the normalized amplitude of the rf elect
field calculated for a bounded plasma in a slab geometry with
without the ambipolar potentialf524(x/R21)2 ~in volts! for the
same parameters as in Fig. 1 for the following two cases:~1! the
electron density at the electrode,n(0), is equal to the electron den
sity of the uniform plasma,n0 , i.e., n(0)5n0 and ~2! the electron
density in the center,n(R), is equal ton0, i.e., n(R)5n0, respec-
tively.
1-3
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I. D. KAGANOVICH AND O. POLOMAROV PHYSICAL REVIEW E68, 026411 ~2003!
5m(vx
21vy

21vz
2)/2 is the kinetic energy,w52ef is the elec-

tron electrostatic potential energy, andf is the electrostatic
potential. f 1 does not contribute to the electron density~the
integral f 1 over the velocity space is equal to zero* f 1d3v
50), but f 1 contributes to the electron current~the integral
f 0 over the velocity space weighted with the electron vel
ity is equal to zero*vf 0d3v50). Typically, the mean elec
tron flow velocity (Vr f 5*vf 1d3v/* f 0d3v) is small com-
pared with the thermal velocityVT . Therefore, the isotropic
part of the EVDF is larger than the anisotropic partf 1
;(Vr f /VT) f 0! f 0 @15–17#.

The Boltzmann equation for electron velocity distributio
function reads

] f 1

]t
1vx

] f 1

]x
2

eEsc~x!

m

] f 1

]vx
2

eEy~x,t !

m

]~ f 01 f 1!

]vy

5C~ f 11 f 0!, ~1!

where Esc(x) is the space-charge stationary electric fie
Ey(x,t) is the rf nonstationary electric field, andC( f ) is the
collision integral. In Eq.~1!, we used the fact that

vx

] f 0~«!

]x
2

eEsc~x!

m

] f 0~«!

]vx
5vx

] f 0~«!

]x
u«x

50, ~2!

because«x is constant along a trajectory. After applying th
standard quasilinear theory, Eq.~1! splits into two equations
@29#: a linear equation forf 1,

] f 1

]t
1vx

] f 1

]x
2

eEsc~x!

m

] f 1

]vx
2

eEy~x,t !

m

] f 0

]vy
5C~ f 1!,

~3!

and a quasilinear equation forf 0,

2
eEy~x,t !

m

d f1

dvy
5C~ f 0!, ~4!

where the overbar denotes space-time averaging over
phase space available for the electron with the total energ«
@54–56#.

The rf electric fieldEy(x,t)5Ey0(x)exp(2ivt) and the
anisotropic part of the EVDFf 15 f 10exp(2ivt) are harmonic
functions, wherev is the discharge frequency. In what fo
lows the subscript 0 is omitted. Equation~3! becomes

2 iv f 11vx

] f 1

]x
u«x

2evyEy~x!
d f0

d«
52n f 1 . ~5!

In the transformation from Eq.~3! to Eq. ~5! the Bhatnager-
Gross-Krook ~BGK! approximation was usedC( f 1)5
2n f 1, wheren is the transport collision frequency and w
introduced a new variable, namely, the total energy along
x axis, «x5mvx

2/21w(x). There have been a number
studies, which explored the effects of the exact collision
tegral on collisionless phenomena@57,58#. These treatments
use expansion in series of spherical functions in veloc
spaces. The exact calculations are important only if the
lision frequency is a strong function of the polloidal scatt
02641
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ing angle. If the differential cross section does not depend
the polloidal scattering angle, the BGK approximation is e
actly correct@58#. For partially ionized plasma, the electron
neutral collisions are the most frequent scattering mec
nism. In the low-pressure discharges typical electr
energies are in the range 1–5 eV@2# and the differential cross
section weakly depends on the polloidal scattering angle
a result, the BGK approximation has a good accuracy@58#.

Equation~5! can be solved by a number of different met
ods. First, let us consider a direct solution. Alternative de
vation using Fourier series is performed in Appendix C. A
ter some straightforward algebra described in Appendix
the symmetric part of the EVDFf 1s[1/2(f 111 f 12) is
given by

f 1s~v,x!52mvyVy
r f ~x,«x!

d f0

d«
, ~6!

where Vy
r f (x,«x)51/2(Vy1

r f 1Vy2
r f ), Vy6

r f are the oscillatory
velocities of an electron with a given«x , 6 signs denote
vx.0 andvx,0, respectively;

Vy
r f ~x,«x ,v'!52

e

m sinhF1
FcoshFE

x

x1

Ey~x8!

3cosh~F12F8!dt81cosh~F12F!

3E
x2

x

Ey~x8!coshF8dt8G , ~7!

t[E
x2

x dx

uvx~x,«x!u
, ~8!

F~x,«x ,v'![E
x2

x

~2 iv1n!dt, ~9!

F1~«x ,v'![F~x1 ,«x ,v'!, ~10!

where x2(«x) and x1(«x) are the left and right turning
points, respectively, for the electron with energy«x @corre-
sponding to zero velocityvx or «x5ew(x2)], t is the time
of flight from the left turning pointx2(«x) to x, and v'

5Avy
21vz

2. The functionsVy
r f andF depend on the electron

speed via the collision frequencyn(v).
In the local limit the electron mean free path is smalll

!d and the phase is large Re(F)@1. Therefore, coshF
' sinhF'1/2 exp(F). The main contribution in both inte
grals in Eq.~7! are near the pointx85x and, sincedF5
(2 iv1n)dt,

Vy
r f '2

e

m

Ey~x!

~2 iv1n!
, ~11!

as it should be in the local limit.

III. CALCULATION OF NONLOCAL CONDUCTIVITY

Knowing the EVDF f 1s , one can calculate the curren
density
1-4
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SELF-CONSISTENT SYSTEM OF EQUATIONS FOR A . . . PHYSICAL REVIEW E68, 026411 ~2003!
j 52
em3/2

4pA2
E f 1svyd

3v. ~12!

Substitutingf 1s from Eq. ~6! into Eq. ~12! and making the
transformation to the spherical coordinates in the veloc
space dvxdvydvz5v2dv sinqdqdc (cosq5vx /v;tanc
5vy /vz), Eq. ~12! becomes

j ~x!5eA2m3/2E
0

`

w^vy
2Vy

r f &
d f0~«!

d«
dv, ~13!

where the average over velocity direction factor^vy
2Vy

r f & is

^vy
2Vy

r f &5
v2

4pE0

pE
0

2p

Vy
r f ~x,«x ,v !@sinq#3@cosc#2dcdq.

~14!

BecauseVy
r f does not depend onc, integration overc angle

can be completed. Changing the integral fromq to vx
5v cosq gives

^vy
2Vy

r f &Ä
1

4vE2v

v
Vy

r f ~x,«x ,v'!~v22vx
2!dvx ~15!

or

^vyVy
r f &Ä

1

2mAw
E

w(x)

«

Vy
r f ~x,«x ,v'!

«2«x

A«x2w~x!
d«x .

~16!

Substituting Eq.~16! into Eq. ~13! and changing integration
from v to « yields

j ~x!5
e

2Ew(x)

` F E
w(x)

« «2«x

A«x2w~x!
Vy

r f d«xG d f0~«!

d«
d«.

~17!

Further simplifications are possible if the collision frequen
n is small (n!v) or n does not depend on electron velocit
In this caseVy

r f (x,«x ,v') is the only function of (x,«x).
Integrating Eq.~17! in parts yields

j ~x!52
e

2Ew(x)

` F E
w(x)

« Vy
r f ~x,«x!

A«x2w~x!
d«xG f 0~«!d«. ~18!

If Vy
r f is a constant Eq.~18! gives trivial result j 5

2enVy
r f .

Introducing a new functionG(«),

G~«![E
«

`

f 0~«!d«, ~19!

and integrating Eq.~18! in parts one more time gives

j ~x!52
e

2Ew(x)

` Vy
r f ~x,«!G~«!

A«2w~x!
d«. ~20!
02641
y

For the Maxwellian EVDFf 0, Eq. ~20! is equivalent to the
result of Libermanet al. @38#.

Substituting Eq.~7! into Eq.~20! yields the nonlocal con-
ductivity operator

j y~x!5E
0

x

G~x,x8!Ey~x8!dx81E
x

L

G~x8,x!Ey~x8!dx8,

~21!

where

G~x,x8!5
1

2

e2

A2m
E

max(w,w8)

` coshF cosh~F12F8!

sinhF1

3
G~«!

A«2w~x!A«2w~x8!
d«. ~22!

Note that G(x,x8) has a logarithmic singularity atx5x8
@38#, but because calculation of the electron current in E
~21! requires additional integration, there is no singularity
the current.

In the limit of large gap, whered,l!L, Re(F)@1 and
coshF cosh(F12F8)/sinhF1→coshF exp(2F8), and the
region of integration in Eq.~21! beyond the skin layer can b
omitted. In the local limit, wherel!d, Eq. ~21! gives the
standard local conductivity, see Eq.~11!.

IV. CALCULATION OF THE TRANSVERSE rf ELECTRIC
FIELD PROFILE

Maxwell’s equations can be reduced to a single sca
equation for the transverse electric field@32#,

d2Ey

dx2
1

v2

c2
Ey52

4p iv

c2
@ j ~x!1Id~x!2dantiId~x2L !#,

~23!

where the electron currentj is given by Eq.~21!, I is the
current in the coil atx50, and danti50, if there is the
grounded electrode and no coil with the current located
x5L, anddanti51, if there is a coil with the current2I at
x5L. The 1D slab system of two currents flowing in opp
site directions describes very well a cylindrical configurati
with the radiusR, where a coil produces rf currents at bo
plasma boundariesx50 andx52R, R5L/2 @25,26#. Equa-
tions ~23! and ~21! can be solved numerically using a finit
difference scheme. There is a major difficulty in such
approach. Straightforward computing of the compl
Green’s function in Eq.~22! is slow and time consuming
@41#. The better approach is to solve the integro-differen
equation~23! making use of a spectral method, where t
electric field is represented as a sum of harmonic functio

A. Solving the Maxwell equations for the rf electric field using
Fourier series

System that has an antenna atx50 and a grounded elec
trode atx5L in the uniform plasma was studied theoretica
in Ref. @27#. The papers@25,35# considered a cylindrical-like
1-5
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system in the uniform plasma. Both papers used Fourier
ries to solve Maxwell’s equations. Here, we generalize
procedure for a case of a nonuniform plasma.

Similar to the previous analysis, it is convenient to co
tinue the rf electric field symmetricallyEy(x)5Ey(2x) out-
side of the slab. Then, the electric field is given by Four
series@27#

Ey~x!5(
s50

`

Jscos~ksx!, ~24!

wheres is an integer,ks5(2s11)p/(2L) for the case of the
grounded electrode, andks5(2s11)p/L for the case of the
cylindrical-like system. Substituting Eq.~24! into Eq. ~23!
and integrating with the weight 2 cos(ksx)/L over the region
@0,L# yields

S 2ks
21

v2

c2 D Js52
4p iv

c2 F j s1
2I @11danti,k#

L G , ~25!

where

j s5
2

LE0

L

j ~x!cos~ksx!dx. ~26!

Substituting the equation for the current density from App
dix C, Eq. ~C9!, gives

j s5
e2

m

1

~2s11!VbT
(
l 50

`

J lZs,l
genS v1 in

~2s11!VbT
D , ~27!

where VbT5VTp/L, and we introduced the generalize
plasma dielectric function

Zs,l
gen~j![A2

m

~2s11!pVbT

L (
n52`

` E
0

`

3
G~«!

nVb~«!2~2s11!VbTj

Gs,n~«!Gl ,n~«!

Vb~«!
d«,

~28!

where the coefficientsGl ,n(«) are the temporal Fourier trans
form of cos(klx) in the bounce motion of the electron in th
potential well@dx/dt52eEsc(x)/m#,

Gl ,n~«!5
1

T F E
0

T

cos@klx~t!#cosS pnt

T DdtG . ~29!

Finally, the Maxwell equation~25! together with the equa
tions for the electron current~27! and~29! comprise the com-
plete system for determining profiles of the rf electric fiel

B. Examples of calculation of rf field profiles
for a given EEDF

In the limit of uniform plasma@Esc(x)50# t5x/vx , T
5L/vx , and Eq.~29! gives
02641
e-
e

-

r

-

Gl ,n~«!5
1

L F E
0

L

cos~klx!cosS npx

L DdxG . ~30!

For a cylindrical-like system coefficientsGl ,n(«) are particu-
larly simple:

Gl ,n~«!5
1

2
d (2l 11),unu , ~31!

and the generalized plasma dielectric function for a giv
Maxwellian EEDF is

Zs,l
gen~j!5ds,lZ~j!, ~32!

whereZ(j) is the ‘‘standard’’ plasma dielectric function,

Z~j!5p21/2E
2`

`

dt
exp~2t2!

t2j
. ~33!

System of equations~25!, ~27!, and ~29! is identical to the
results of Ref.@25# for cylindrical-like configuration uniform
plasma with a Maxwellian EEDF. Figure 1 shows the calc
lated profile of the rf magnetic field and its comparison w
the analogous result from Ref.@25# for v/VbT51.5, n/VbT
50.3, andRvp /c54.5, wherevp is the plasma frequency
andR5L/2 is the half-width of the slab. The electron tem
perature isTe52.5 eV and the uniform spatial electron de
sity is n051012 cm23.

For the case of a sufficiently wide slab (L@VT /v) the
results of the formalism described above coincide with
results from Ref.@22# for a semi-infinite uniform plasma
with a Maxwellian EEDF as shown in Fig. 2. The parame
L5vT

2vp
2v/(c2u iv1nu3) determines the square of the rat

of the effective electron mean free path to the skin dep
The parameterL can serve as a measure of ‘‘anomality’’ o
the rf field profiles@22#. For example, the rf electric field
profiles depart from a simple exponential function for lar
L.0.5; see Fig. 2.

For a nonuniform plasma taking into account an ambip
lar potential makes simulation of the rf field profiles mu
more cumbersome than for a uniform plasma. Neverthel
electric field profiles can be effectively computed making u
of the fast Fourier transform for numerical computation
Gl ,n(«) coefficients in Eq.~29!. The off-diagonal coefficients
are generally very small, that is why, utilizing this spect
method, makes computing much faster than the straight
ward application of the finite difference method as it w
done in Refs.@41,42#. Figure 3 shows the rf electric field
profiles calculated for a bounded plasma in a slab geom
with and without the ambipolar potentialf524(x/R21)2

~in volts! for the same parameters as in Fig. 1 for the follo
ing two cases:~1! the electron density at the electrode,n(0),
is equal to the electron density of the uniform plasma,n0,
i.e., n(0)5n0 and ~2! the electron density in the cente
n(R), is equal ton0, i.e.,n(R)5n0, respectively. From Fig.
3 it can be seen that taking into account an ambipolar po
tial greatly alters the rf electric field profile.
1-6
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V. AVERAGING OF KINETIC EQUATION FOR THE MAIN
PART OF THE EEDF

Kinetic equation forf 0 averaged over the discharge p
riod is

vx

] f 0

]x
2

e

m
Esc~x!

d f0

dvx
2

e

2m
ReFEy* ~x!

d f1

dvy
G5C~ f 0!,

~34!

C~ f !5Cel
v ~ f !1Cel

« ~ f !1Cee~ f !1Cinel~ f !, ~35!

Cel
v ~ f !5E ~ f 82 f !vds, ~36!

Cel
« ~ f !5

]

v]w
~vVelf !, ~37!

Cee~ f !5
]

v]w S vDee

]

]w
f D1

]

v]w
~vVeef !, ~38!

Cinel~ f 0!5(
k

FA~w1«k* !

Aw
nk* ~w1«k* ! f 0~«1«k* !2nk* f 0G ,

~39!

where w5mv2/2 is the kinetic energy . Here, the elast
collision integral splits into two partsCel( f )5Cel

v ( f )
1Cel

« ( f ), whereCel
v ( f ) is the part of the elastic scatterin

collision integral, which takes into account only changes
the electron momentum in the collisions with different
cross sectionds andCel

« ( f ) accounts for an energy chang
in the elastic collisions.Cee( f 0) is the electron-electron col
lision integral andCinel( f 0) is the sum over all inelastic
collisions with the electron energy loss«k* and inelastic col-
lision frequencynk* ~see Refs.@5,20#! for more details on
simulating ionization and wall losses!. In Eq. ~38!, the coef-
ficientsDee,Vee, Vel are given by@55,60#

Vel5
2m

M
wn, ~40!

Vee5
2wnee

n S E
0

w

dwAw f D , ~41!

Dee5
4

3

wnee

n S E
0

w

dww3/2f 1w3/2E
w

`

dw fD , ~42!

nee5
4pLeee

4n

m2v3
, ~43!

wherenee is the Coulomb collision frequency andLee is the
Coulomb logarithm. Note that at large electron energie«
@Te , Vee'2wnee, and Dee'2wTenee, where Te

5 2
3 *0

wdww3/2f /n and Cee( f ) describes relaxation of th
EEDF to a Maxwellian.

If the electron energy relaxation length~roughly inelastic
electron mean free pathl* 5VT /nk* ) is large compared with
02641
f

the gap (l* @L), the first two terms on the left hand side o
Eq. ~34! are dominant and the sum of the first two term
equals to zero~in an asymptotic series with the paramet
l* /L). Any function of the longitudinal energy«x[mvx

2/2
1w(x) nullifies the first two terms on the left hand side
Eq. ~34!. Therefore, f 0 is approximately a function of«x
only, not a function of both variablesx,vx separately. Simi-
larly, Cel

v ( f ) is the largest term from the remaining terms
the equation. Any isotropic function of the electron spe
nullifies Cel

v ( f 0)50. To satisfy both conditions: isotropy an
to be a function of«x , f 0 must be a function of total energ
«[mv2/21w(x) only @56#. This assumption was verified
experimentally in Refs.@16,17,59# and by comparison with
particle-in-cell simulations in Ref.@5# for a capacitive
coupled plasma, in Refs.@8,36# for a inductive coupled
plasma, and in Ref.@20# for an electron cyclotron resonanc
~ECR! discharge.

To obtain f 0, it is necessary to average Eq.~34! over fast
electron bouncing and over all velocity angles. First, let
average over fast electron bouncing. In order to do so,
integrate all terms of Eq.~34! over the full period of electron
bouncing,

R dtL~x,vx![E
x2

x1dx

vx
L~x,vx.0!1E

x2

x1 dx

uvxu
L~x,vx,0!,

whereL(x,vx) is a term in Eq.~34!. Because the first two
terms represent the full time derivatived f /dt along the tra-
jectory, they disappear after integration, and Eq.~34! be-
comes

2 R dt
e

2m
ReFEy* ~x!

d f1

dvy
G5 R dtC~ f 0!. ~44!

Second, we integrate Eq.~44! over all possible perpendicula
velocities dvydvz with a given total energym(vy

21vz
2)

,2« @54,56#.
Total averaging is a triple integral

L~x,v![
1

4pE E dvydvz R dtL~x,v!, ~45!

where factor 1/4p is introduced for normalization purpose
Note that integral in Eq.~45! describes averaging over all th
phase space available for the electron with the total ene
«, and can be rewritten as

1

4pE E dvydvz R dtL~x,v!

5
m

4pE dxd3vd„«2w2w~x!…L~x,v!. ~46!

If L(x,v) depends on the electron velocity only via speedv,
which is the case forCel

« ( f ), Cee( f ), andCinel( f ) collision
integrals, then integration in Eq.~46! simplifies to become

L~x,v!~«!5E
x2

x1

dxv~x,«!L„x,v~x,«!…, ~47!
1-7
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v~x,«!5A2@«2w~x!#/m. ~48!

Thus, averaging of the collision integral terms, respons
for energy relaxation in Eq.~44!, reduces to integrating ove
the entire available discharge volume weighted with the
locity for an electron with a given total energy«. This pro-
cedure is identical for both collisionless (l.L) and colli-
sional (l&L) cases„compare Eq.~45! with the collisional
(l&L) case@3,4,54#…. However, as we shall see next, th
electron heating in the rf electric field differs greatly for co
lisionless and collisional cases.

A. Calculation of the nonlocal energy diffusion coefficient

The term describing electron heating originates from
averaged left hand side of Eq.~44!. Making use of the aver-
aging procedure, Eq.~46!, the left hand side of Eq.~44!
becomes

eEy~x,t !

m

d f1

dvy
5

e

8pE dxd3vd@«2w2w~x!#

3ReFEy* ~x!
d f1

dvy
G . ~49!

Using chain rule for integration indvy and the fact that
dd(«2w2w)/dvy5mvydd(«2w2w)/d«, Eq. ~49! be-
comes

eEy~x,t !

m

d f1

dvy
5

em

8p

d

d«
ReE dxd3vd@«2w2w~x!#

3vyEy* ~x! f 1 . ~50!

Substitutingf 1 from Eq. ~6! and integrating in the velocitie
vy andvz yields

eEy~x,t !

m

d f1

dvy
5

d

d«
D«

d f0

d«
, ~51!

where we introduced the energy diffusion coefficientD« ,

D«52
e

4m
ReE

0

«

d«x~«2«x!E
x2(«x)

x1(«x)dx

vx
Ey* ~x!Vy

r f ~x,«x!.

~52!

As shown in Appendix B, Eq.~52! is the general expressio
for the energy diffusion coefficient. In the limiting regime o
the small mean free path (l!d), D« tends to the known
collisional limit @3,4,54#. In the intermediate pressure rang
(d!l!L), Eq. ~52! corresponds to the hybrid heatin
where the electron motion is collisionless in the skin lay
but the randomization of the velocity kick acquired during
single pass through the skin layer occurs due to collision
the plasma bulk@28#; and in the collisionless limit, where th
mean free path is large (l.L), Eq. ~52! describes collision-
less heating~see Appendixes B and C for details!. If the
collision frequency does not depend on the kinetic energy
direct substitution ofVy

r f from Eq. ~7! gives
02641
e

-

e

r,

in

e

D«~«!5
pe2

4m2 (
n52`

` E
0

«

d«xuEyn~«x!u2
«2«x

Vb~«x!

3
n

@Vb~«x!n2v#21n2
, ~53!

where

Eyn~«x!5
1

p F E
0

p

Ey~u!cos~nu!duG . ~54!

Note that expression forD«(«) in Eq. ~53! accounts for the
bounce resonanceVb(«x)n5v and the transit-time reso
nancev5v/d, which corresponds to maxima ofEyn(«x).

VI. SELF-CONSISTENT SYSTEM OF EQUATIONS

In summary, the self-consistent system of equations
the kinetic description of low-pressure discharges accoun
for nonlocal and collisionless electron dynamics contains
averaged kinetic equation forf 0 , the Maxwell equation for
the rf electric field, the quasineutrality condition for the ele
trostatic potential, and the ion density profile given by flu
conservation equations for ion density and ion momentu
These are given as follows.

~1! The averaged kinetic equation forf 0 reads

2
d

d«
~D«1Deē!

d f0

d«
2

d

d«
@Veē1Vel̄# f 0

5(
k

F nk* ~w1«k* !
A~w1«k* !

Aw
f 0~«1«k* !2 n̄k* f 0G ,

~55!

where the over bar denotes averaging according to Eq.~47!,
and Dee is given by Eq.~42!, Vee by Eq. ~41!, Vel by Eq.
~40!, andD« by Eq. ~52! or by Eq.~53!.

~2! The rf electric field is determined from the Maxwe
equation~23!, where the electron current is given by E
~21!. A robust procedure to solve these equations by the
Fourier transform method is described by Eqs.~25!, ~27!,
and ~29!.

~3! The electrostatic potential is obtained using t
quasineutrality condition

ni~x!5E
w(x)

`

f 0~«!A«2w~x!d«, ~56!

whereni(x) is the ion density profile given by a set of flui
conservation equations for ion density and ion moment
@41#. Euation ~56! is solved in the form of a differentia
equation@5#

dw

dx
52Te

scr~x!
d ln@ni~x!#

dx
, ~57!

whereTe
scr(x) is the electron screening temperature,
1-8
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Te
scr~x!5F 1

2n~x!
E

w(x)

`

f 0~«!
d«

A«2w~x!
G21

. ~58!

~4! The power deposition can be computed as

P~x!5
1

2
Re@Ey* ~x! j ~x!#. ~59!

Substituting Eq. ~17!, integrating over the discharg
length, and changing the integration order, Eq.~59! becomes

P52A2mE
0

`

D«~«!
d f0~«!

d«
d«. ~60!

Equation~60! can be used as a consistency check.
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APPENDIX A: DERIVATION OF f 1

Direct integration of Eq.~5! yields

f 11~x,v !5evy

d f0

d« F E
x2

x

e2[F(x)2F(x8)]E8dt81C1e2F(x)G ,
~A1!

f 12~x,v !5evy

d f0

d« F2E
x2

x

eF(x)2F(x8)Ey8dt81C2eF(x)G ,
~A2!

where 6 signs denotevx.0 and vx,0, respectively, and
for brevity we introducedEy8[Ey(x8) anddt5dx/uvxu, and

F~x![E
x2

x

~2 iv1n!dt. ~A3!

The two constantsC1 ,C2 are to be determined from th
boundary condition at the turning points. The EVDF cont
ues at the turning points

f 12~x2!5 f 11~x2!, f 12~x1!5 f 11~x2!. ~A4!

Substituting the boundary condition at the turning poin
Eqs.~A4!, into Eqs.~A1! and ~A2! yields

C15C2[C ~A5!

and
02641
of
r-
.

h
u,

-

,

2E
x2

x1

eF12F8Ey8dt81CeF1

5E
x2

x1

e2(F12F8)Ey8dt81Ce2F1

or

C5
1

sinhF1
E

x2

x1

cosh~F12F8!Ey8dt8. ~A6!

Here F[F(x), F8[F(x8), and F1[F(x1). f 1 enters
into the current calculation only as a sumf 111 f 12 . There-
fore, we computef 1s[1/2(f 111 f 12) from Eqs. ~A1! and
~A2!,

f 1s5evy

d f0

d« H C coshF2E
x2

x

sinh~F2F8!Ey~u8!dt8J ,

~A7!

substitutingC from Eq. ~A6! gives

f 1s52mvyVy
r f d f0

d«
, ~A8!

where

Vy
r f 52

e

m

1

sinhF1
FcoshFE

x2

x1

cosh~F12F8!Ey8dt8

2sinhF1E
x2

x

sinh~F2F8!Ey8dt8G . ~A9!

Splitting the first term into two integrals*x2

x15*x2

x 1*x
x1 ,

and accounting for the fact that

coshF cosh~F12F8!2sinhF1sinh~F2F8!

5coshF8cosh~F12F8! ~A10!

gives

Vy
r f 52

e

m

1

sinhF1
FcoshFE

x

x1

Ey8cosh~F12F8!dt8

1cosh~F12F!E
x2

x

Ey8coshF8dt8G . ~A11!

APPENDIX B: DIFFUSION COEFFICIENT IN THE
ENERGY SPACE

The equation for the energy diffusion coefficient

D«52
e

4m
ReE

0

«

d«x~«2«x!E
x2

x1dx

vx
Ey* ~x!Vy

r f ~x,«x!

~B1!

has correct limits in collisional and collisionless cases.
1-9
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1. Collisional casel™d

In the collisional case, the mean free path is small. S
stituting Vy

r f from Eq. ~11! into Eq. ~B1! gives

D«5
e2

4m2
ReE

0

«

d«x~«2«x!E
x2

x1 dx

A2~«x2w!/m

3
Ey* ~x!Ey~x!

2 iv1n
. ~B2!

Changing the order of the integration and accounting for
fact that

1

m2E0

«

d«x

«2«x

A2~«x2w!/m
5

2

3
v3,

D«5
e2

6
ReE

x2

x1

dxuEyu2
nv3

~v21n2!
, ~B3!

which corresponds to the collisional case@16,17#.

2. Hybrid case d™l™L

In the hybrid case, collisions are rare during the elect
motion in the skin layer. Therefore,Vy6

r f is simply the veloc-
ity ‘‘kick’’ due to the rf electric field. Recalling that
Vy

r f (x,«)5(Vy1
r f 1Vy2

r f )/2, the last factor in Eq.~B1! can be
written as

2
1

2

e

mE
x2

x1dx

vx
Ey* ~x!Vy

r f ~x,«x!

5 K 1

2 R dt
dDVy~t!

dt
DVy~t!L

5
1

4
^DVy`

2 &, ~B4!

whererdt is an integral along the electron trajectory ent
ing and leaving the skin layer,DVy` is the total velocity kick
after a single pass through the skin layer, and the ang
brackets denote averaging over phases of the rf field. Eq
tion ~B1! simplifies to

D«5
1

8E0

«

d«x~«2«x!^DVy`
2 &. ~B5!

In the limit of a uniform plasma Eq.~B5! was proposed in
Refs.@28,36#.

3. Collisionless caselšL

The energy diffusion coefficient, Eq.~B1!, is determined
by the following integral:I5*x2

x1Ey* (x)Vy
r f dt. Substitution

of Vy
r f from Eq. ~A11!,
02641
-

e

n

-

ar
a-

I5
1

sinhF1
E

x2

x1

Ey* ~x!dtFcoshFE
x

x1

Ey~x8!

3cosh~F12F8!dt81cosh~F12F!

3E
x2

x

Ey~u8!coshF8dt8G .
The term in the brackets can be expressed as

coshF1coshFE
x2

x1

EycoshF8dt8

1sinhF1FcoshFE
x

x1

EysinhF8dt8

1sinhFE
x2

x

EycoshF8dt8G .
Therefore,

I5
coshF1

sinhF1
E

x2

x1

Ey8coshF8dt8E
x2

x1

Ey*
8coshF8dt81I1 ,

where

I15E
x2

x1

Ey* dtFcoshFE
x

x1

Ey8sinhF8dt8

1sinhFE
x2

x

Ey8coshF8dt8G .
Integrating in parts gives

I15E
x2

x1

sinhFdtF E
x2

x

@Ey8Ey* 1EyEy* #coshF8dt8G .
In the collisionless limit, sinhF.i sinvt1nt cosvt. Be-

cause the energy diffusion coefficient is determined by
real part of the integral and the real part of the phase is sm
(;n), I1 can be neglected. Therefore,

D«5
e2

4m
ReE

0

«

d«x~«2«x!cothF1E
x2

x1

Ey8cosvt8dt8

3E
x2

x1

Ey*
9cosvt9dt9, ~B6!

where sinhF1.i sinvT1nTcosvT. The main contribution
comes from the points wherevT5pn and cothF1

.p(nd(vT2pn):

D«~«!5
pe2

4m (
n52`

` E
0

«

d«xuE f u2~«2«x!d„vT~«x!2pn…,

~B7!

E f~«x!5E
x2(«x)

x1(«x)
Ey~x8!cosvt8dt8. ~B8!

This corresponds to the pervious results of Ref.@29#.
1-10
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APPENDIX C: ALTERNATIVE DERIVATIONS IN
FOURIER SPACE

The direct calculations described in the previous secti
are rather cumbersome. The alternative derivation can
made easier using Fourier series.

It is convenient to introduce the variable angle of t
bounce motion,

u~x,«x!5
psgn~vx!

T~«x!
E

x2

x dx

uvx~«x!u
, ~C1!

whereT is half of the bounce period of the electron motio
in the potential wellw(x), which is given by

T~«x!5E
x2

x1 dx

uvx~«x!u
. ~C2!

The bounce frequency for the electron in the potential we
Vb(«x)5p/T(«x). Utilizing angle variable, Eq.~5! simpli-
fies to become

2 iv f 11Vb

] f 1

]u
u«x

2vyeEy~u!
d f0

d«
52n f 1 . ~C3!

We shall use Fourier series in variableu:

g~x,«x!5 (
n52`

`

gnexp~ inu!, ~C4!

gn5
1

2p F E
2p

p

g~u,«x!exp~2 inpu!duG . ~C5!

Note that in the last integral, the region 0,u,p corre-
sponds tovx.0, and the region2p,u,0 corresponds to
vx,0. Utilizing Fourier series, Eq.~C5!, the Boltzmann
equation becomes

~ inVb2 iv1n! f 1n5eEynvy

d f0

d«
, ~C6!

where
a

ma

E
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Eyn~«x!5
1

p F E
0

p

Ey~u!cos~nu!duG . ~C7!

Making use of Fourier series, Eqs.~C4! and ~C6!, gives

f 1s~x,«x!52mvyVy
r f ~x,«x!

d f0

d«
,

where

Vy
r f ~x,«x!52

e

m (
n52`

`
Eyncos@nu~x!#

inVb2 iv1n
. ~C8!

Equation~C8! is the alternative form of Eq.~A11!.
Substituting the functionVy

r f (x,«x) from Eq. ~C8! into
Eq. ~20! gives the current density

j ~x!5
e2

2m (
n52`

` E
w(x)

` G~«!

A«2w~x!

Eyncos@nu~x!#

inVb2 iv1n
d«.

~C9!

The averaged energy coefficient is given by Eq.~B1!. Sub-
stituting the functionVy

r f (x,«x) from Eq. ~C8! into Eq. ~B1!
gives

D«5
e2

4m2
ReE

0

«

d«x~«2«x!E
x2

x1dx

vx
Ey* ~x!

3 (
n52`

`
Eyncos@nu~x!#

inVb2 iv1n

or

D«~«!5
pe2

4m2 (
n52`

` E
0

«

d«x

uEyn~«x!u2~«2«x!n

Vb~«x!$@Vb~«x!n2v#21n2%
.

~C10!

Note that Eq.~C10! is valid for any collision frequency and
Eq. ~B7! is valid only for n!v.
. E
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@20# I.D. Kaganovich, M. Mišina, R. Gijbels, and S.V. Berezhno
Phys. Rev. E61, 1875~2000!.

@21# Yu.M. Aliev, U. Kortshagen, A.V. Maximov, H. Schlueter, an
A. Shivarova, Phys. Rev. E51, 6091~1995!.

@22# E.S. Weibel, Phys. Fluids10, 741 ~1967!.
@23# Dirk Van Eester, J. Plasma Phys.65, 407 ~2001!.
@24# E. Startsev and R. C. Davidson~private communication!.
@25# H.A. Blevin, J.A. Reynolds, and P.C. Thonemann, Phys. Flu

13, 1259~1970!.
@26# H.A. Blevin, J.A. Reynolds, and P.C. Thonemann, Phys. Flu

16, 82 ~1973!.
@27# K.C. Shaing and A.Y. Aydemir, Phys. Plasmas4, 3163~1997!.
@28# I.D. Kaganovich, V.I. Kolobov, and L.D. Tsendin, Appl. Phy

Lett. 69, 3818~1996!.
@29# Yu.M. Aliev, I.D. Kaganovich, and H. Schluter, Phys. Plasm

4, 2413~1997!; and in more detail, Yu. M. Aliev, I. D. Kaga-
novich, and H. Schluter, inCollisionless Electron Heating in
RF Gas Discharges. I. Quasilinear Theory, Vol. 367 of NATO
Advanced Studies Institute, Series B: Physics,edited by U.
Korsthagen and L. Tsendin~Plenum Press, New York, 1998!.

@30# U. Buddemeier and I. Kaganovich, inCollisionless Electron
Heating in RF Gas Discharges. II. Role of Collisions and No
linear Effects,Vol. 367 of NATO Advanced Studies Institut
Series B: Physics,edited by U. Korsthagen and L. Tsend
~Plenum Press, New York, 1998!.

@31# V.A. Godyak and R.B. Piejak, J. Appl. Phys.82, 5944~1997!.
@32# V.I. Kolobov and D.J. Economou, Plasma Sources Sci. Te

nol. 6, 1 ~1997!.
@33# F.F. Chen, Phys. Plasmas8, 3008~2001!.
@34# B.E. Meierovich, Sov. Phys. JETP10, 782 ~1970!.
@35# N.S. Yoon, S.S. Kim, C.S. Chang, and Duk-In Choi, Ph

Rev. E54, 757 ~1996!.
@36# V.I. Kolobov, D.P. Lymberopoulos, and D.J. Economou, Ph

Rev. E55, 3408~1997!.
@37# R.G. Storer, Phys. Fluids16, 949 ~1973!.
@38# M.A. Liberman, B.E. Meierovich, and L.P. Pitaevskii, So

Phys. JETP35, 904 ~1972!.
02641
.

/

s

s

-

-

.

.

@39# S.M. Dikman and B.E. Meierovich, Sov. Phys. JETP37, 835
~1973!.

@40# A.N. Vasiliev and B.E. Meierovich, Sov. Phys. JETP40, 865
~1974!.

@41# B. Ramamurthi, D.J. Economou, and I.D. Kaganovich, Plas
Sources Sci. Technol.12, 170 ~2002!; see http://arxiv.org/ftp/
physics/papers/0208/0208053.pdf

@42# B. Ramamurthi, D. J. Economou, and I. D. Kaganovic
Plasma Sources Sci. Technol.12, 302 ~2003!; see http://
arxiv.org/ftp/physics/papers/0208/0210114.pdf

@43# V. Vasenkov and M.J. Kushner, Phys. Rev. E66, 066411
~2002!.

@44# L.D. Landau, J. Phys.~Moscow! 10, 25 ~1946!.
@45# B.P. Cluggish, J.R. Danielson, and C.F. Driscoll, Phys. R

Lett. 81, 353 ~1998!.
@46# A. A. Vedenov, inTheory of a Weakly Turbulent Plasma, Re-

views of Plasma Physics Vol. 3, edited by M. A. Leontovic
~Consultants Bureau, New York, 1967!.

@47# S.V. Berezhnoi, I.D. Kaganovich, and L.D. Tsendin, Plasm
Phys. Rep.24, 556 ~1998!.

@48# V.A. Godyak and V.I. Kolobov, Phys. Rev. Lett.81, 369
~1998!.

@49# V.A. Godyak, B.M. Alexandrovich, and V.I. Kolobov, Phys
Rev. E64, 026406~2001!.

@50# Chin Wook Chung, K.-I. You, S.H. Seo, S.S. Kim, and H.
Chang, Phys. Plasmas8, 2992~2001!.

@51# Chin Wook Chung, S.S. Kim, S.H. Seo, and H.Y. Chang,
Appl. Phys.88, 1181~2000!.

@52# I.D. Kaganovich, Phys. Rev. Lett.82, 327 ~1999!.
@53# Yu. O. Tyshetskiy, A. I. Smolyakov, and V. A. Godyak, Phy

Rev. Lett.90, 255002~2003!.
@54# L.D. Tsendin and Yu.B. Golubovskii, Sov. Phys. Tech. Ph

22, 1066~1977!.
@55# I.D. Kaganovich and L.D. Tsendin, IEEE Trans. Plasma S

20, 66 ~1992!.
@56# I.D. Kaganovich and L.D. Tsendin, IEEE Trans. Plasma S

20, 86 ~1992!.
@57# W.W. Lee, R.H. Hirsch, and J. Devait, Phys. Fluids14, 941

~1971!.
@58# E. Furkal, A. Smolyakov, and A. Hirose, Phys. Rev. E58, 965

~1998!.
@59# Chin Wook Chung and Hong-Young Chang, Phys. Plasma7,

3826 ~2000!.
@60# V.L. Ginzburg and A.V. Gurevich, Sov. Phys. Usp.3, 115

~1960!.
1-12


